PC3301 Pharmacokinetics of Digoxin

Robiul Islam, PhD

Pharmacy, College of Medicine and Dentistry

Learning objectives

- Digoxin mechanism of action
- Indications
- Dosages and formulations available
- Adverse effects
- Pharmacokinetic parameters and related chemical structures
- The need for therapeutic drug monitoring
- Drug interactions
- Digoxin use in special populations
- Case study

What is digoxin?

- Cardiac glycoside → effects the intracellular and extracellular fluids in cardiac cells
- Slows down ventricular rate
- Increases contractility
- Increases cardiac output

Mechanism of action

- Reversibly inhibits Na/K-ATPase channels
- Effects of inhibition:
 - Rise of intracellular Na levels
 - Slows Na-Ca exchange mechanism on cell membrane
 - Increase intracellular Ca²⁺ accumulation
 - Increases Ca²⁺ uptake into sarcoplasmic reticulum
 - More Ca²⁺ released from sarcoplasmic reticulum during subsequent action potentials
 - Increases cardiomyocyte contractility
 → positive inotropic effect

Clinical indications

- Management of arrhythmias
- Removal of risk factors for myocardial infarction
- Controls ventricular heart rate of atrial fibrillation patients
- Prevent risk of CHF and stroke
- Decreases risk of blood clots

Normal Heart

Dosages and formulations

- Three forms:
 - Tablets → 62.5mcg, 200; 250mcg, 100
 - Oral liquid → 50mcg/mL, 60mL
 - Injection → 25mcg/mL, 2mL, 5; 250mcg/mL, 2mL, 5
- Loading dose:
 - 250-500mcg every 4-6 hours
- Maintenance dose:
 - 125-250mcg once daily, max 500mcg
 - Tablets → 62.5mcg, 200; 250mcg, 100
 - Oral liquid → 50mcg/mL, 60mL
 - Injection \rightarrow 25mcg/mL, 2mL, 5; 250mcg/mL, 2mL, 5

Adverse effects

Common (>1%)	Infrequent (0.1-1%)	Rare (<0.1%)
Dizziness	Depression	Thrombocytopenia
Headache	Shortened QRS complex	Seizures
Rash	Atrial or ventricular extrasystoles	Confusion
Bradycardia	Paroxysmal atrial tachycardia with AV block	Psychosis
Nausea	Ventricular tachycardia or fibrillation	Gynaecomastia (long-term use)
Vomiting	Heart block	
Anorexia		
Diarrhoea		
Visual disturbances		
Drowsiness		
Arrhythmia		

Pharmacokinetics - absorption

- Oral bioavailability: 50-90%
- Metabolised by gut flora!
- Absorbed well in GIT
- 70-80% absorbed in initial part of small intestine
- Absorption slowed by food
- High fibres foods reduce absorption → avoid them for two hours following dose

Pharmacokinetics - distribution

- Peak serum concentration 1-3 hours after dose
- Tissue distribution phase around 6-8 hours
- Two compartmental model
- Concentrated in tissues
- Readily crosses BBB and placenta
- Large Vd: 450-500L, or 7.5L/kg
- IBW better for calculating doses rather than total body weight
- Plasma protein binding: 25%, mainly to albumin

Pharmacokinetics - metabolism

- Occurs to only 1% of dose
- Metabolites formed via hydrolysis, oxidation, and conjugation
- CYP enzymes not inhibited or induced

Pharmacokinetics – elimination

- Follows first-order kinetics
- Main route is the kidney: 50-70% of dose excreted unchanged
- 25-28% excreted by other means , eg biliary excretion
- Renal excretion proportional to GFR
- Does not depend on urine flow
- Clearance correlates to creatinine clearance
- Long half-life: 1.5-2 days
- Loading dose required, otherwise steady state takes 5-7 days

Chemical structures

- Certain functional groups improve chemical functions
- Structure determines absorption through different routes
- Contains hydrogen bonds and pi stacking
- High lipophilicity
- Lipinski's rule of 5 can be applied for oral formulation
 - 5 or less hydrogen bond donors \rightarrow 6
 - 10 or less hydrogen bond acceptors \rightarrow 13
 - Molecular weight 500g/mol or less → 780.938g/mol
 - logP of 5 or less \rightarrow 2.37

Digoxin doesn't meet majority of the rules, yet is still bioavailable

7 rotatable bonds

Therapeutic drug monitoring

Immunoassay

Immunoassays are generally commercially developed, with competing manufacturers independently developing their own assay, reagents, antibodies, and standards.

- Digoxin has narrow therapeutic range: 0.5-2mcg/L
- Plasma concentrations measured to individualise dosing regime
- Measured using immunoassays
- Measurements taken 5-7 days after treatment initiation or dose change
- Sample taken minimum 6 hours after dose → at trough level

When is TDM required?

- Following initial dose or dose adjustment
- Concern about non-compliance
- Suspected toxicity
- Potential for drug interactions
- No observed therapeutic effect despite high doses
- Change in physiology \rightarrow renal impairment, pregnancy

Drug interactions

Severe interactions	Moderate interactions
Macrolide antibiotics	Aminoglycosides
Flecainide	Cholestyramine
Trimethoprim	Tetracyclines
Amiodarone	Acarbose
Ketoconazole	Spironolactone
Quinidine	Metoclopramide
Amphotericin B	Indomethacin
B-blockers	Quinine
Verapamil	Calcium channel blockers
Hydroxychloroquine	St. John's wort
Cyclosporine	Lapatinib

Drug interactions

- Amiodarone:
 - Increase risk of proarrhythmia
 - Increases digoxin absorption
 - Decreases elimination, Vd, and CL
- Ketoconazole:
 - Increases absorption and serum digoxin concentration
- Calcium channel blockers:
 - Decreases Vd and renal CL
- Metoclopramide:
 - Decreases absorption from GIT

Hypo- and hyperthyroidism

HYPOTHYROIDISM HYPERTHYROIDISM

- Hypothyroidism:
 - Increases concentration
- Hyperthyroidism:

Rate

- Decreases concentration
- Increases sympathetic tone

Monitor concentration and alter dose as required

Use in special populations – renal dysfunction

- Half-life increases \rightarrow 3.5-5 days
- Increased period of time to reach steady state \rightarrow 1-3 weeks
- Loading dose \rightarrow half of the recommended adult dose
- Maintenance dose:
 - CrCL 30-60mL/min \rightarrow 62.5-250mcg/day
 - CrCL 10-30mL/min \rightarrow 62.5-125mcg/day
 - CrCL <10mL/min \rightarrow 62.5mcg/day or on alternate days

Use in special populations – paediatric patients

- Variable tolerance in newborns
- Dose needs to be reduced and based on level of maturity
- Loading dose \rightarrow half given initially, the one quarter 6-12 hours later, than the final quarter another 6-12 hours later
- Maintenance dose:
 - <2 years \rightarrow 30-40mcg/kg
 - >2 years \rightarrow 24-30mcg/kg
 - Given in single doses or two doses
 - Max \rightarrow 250mcg/day

Use in special populations – geriatric patients

- Elderly patients generally have:
 - Reduced renal function, therefore reduced GFR
 - Extended digoxin half-life
 - Reduced muscle mass, therefore reduced Vd
 - Reduced lean body mass
 - Diuretic induced potassium loss
 - Polypharmacy
 - Co-morbidity
- Loading dose \rightarrow 125-250mcg
- Maintenance dose \rightarrow 62.5-125mcg/day

Use in special populations – electrolyte disorders

- Hypokalaemia:
 - Increases effects of digoxin
 - Decrease in extracellular K⁺ for digoxin to compete with
 - More digoxin binds
 - Can produce toxicity
- Hypomagnesaemia:
- Hyperkalaemia:
 - Reduces effects of digoxin
 - Increase in extracellular K⁺ for digoxin to compete with
 - Digoxin has fewer interactions with binding site

Electrolytes need to be maintained within normal ranges whilst on digoxin

Case study

- A 48 year old 79kg male (171cm in height) was presented to the hospital with atrial fibrillation. After his serum creatinine concentration was determined (83.6µmol/L), digoxin therapy was initiated to control his ventricular rate.
 - Calculate the loading dose (IV bolus) required (as digoxin has a very long halflife) to control his ventricular rate if the desired plasma digoxin concentration is 1.4ng/mL.
 - Calculate the digoxin maintenance dose (IV bolus) for this patient (in mg/day).
 - Calculate an oral digoxin maintenance dose (in mg/day) for the patient if he had NYHA Class III moderate heart failure (F = 0.7, ideal plasma concentration = 0.8mg/mL).

References

- Australian Medicines Handbook. Adelaide: Australian Medicines Handbook Pty Ltd; 2021.
- □ Therapeutic Guidelines Ltd (eTG) (2021) Cardiovascular Drugs: Digoxin
- Amiodarone DrugBank [Internet]. Drugbank.ca. 2018 [cited 16 May 2018]. Available from: https://www.drugbank.ca/drugs/DB00390
- □ Casebook in Clinical Pharmacokinetics and Drug Dosing; Chapter 6 Digoxin